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Abstract—Most existing robust principal component analysis
(PCA) and 2-D PCA (2DPCA) methods involving the l2-norm can
mitigate the sensitivity to outliers in the domains of image analy-
sis and pattern recognition. However, existing approaches neither
preserve the structural information of data in the optimization
objective nor have the robustness of generalized performance. To
address the above problems, we propose two novel center-weight-
based models, namely, centered PCA (C-PCA) and generalized
centered 2DPCA with l2,p-norm minimization (GC-2DPCA),
which are developed for vector- and matrix-based data, respec-
tively. The C-PCA can preserve the structural information of data
by measuring the similarity between the data points and can also
retain the PCA’s original desirable properties such as the rota-
tional invariance. Furthermore, GC-2DPCA can learn efficient
and robust projection matrices to suppress outliers by utilizing
the variations between each row of the image matrix and employ-
ing power p of l2,1-norm. We also propose an efficient algorithm
to solve the C-PCA model and an iterative optimization algorithm
to solve the GC-2DPCA model, and we theoretically analyze their
convergence properties. Experiments on three public databases
show that our models yield significant improvements over the
state-of-the-art PCA and 2DPCA approaches.

Index Terms—2-D principal component analysis (2DPCA),
center, dimensionality reduction, l2,1-norm.

I. INTRODUCTION

D IMENSION reduction plays an important role as a data-
preprocessing step in the domains of image analysis,

machine learning, and data mining. Due to the curse of dimen-
sionality, dimension reduction methods are typically used to
extract the most characteristic features from the raw data,
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then the features are used for the subsequent visualization and
classification tasks [1]–[3]. Among these methods, two repre-
sentative linear dimensionality reduction methods are principal
component analysis (PCA) [4] and linear discriminant analysis
(LDA) [5], and the typical nonlinear dimensionality reduction
methods are the locality preserving projections (LPPs) [6] and
the kernel PCA (KPCA) [7]. The PCA and LDA keep the
global geometric structures linear, while LPP can preserve
the local neighborhood structure. The KPCA is the nonlin-
ear form of PCA, which can better exploit the complicated
spatial structures of high-dimensional data.

Standard PCA is often sensitive to outliers and noise at
different levels of interference in high-dimensional datasets,
since it is based on the minimum reconstruction error in a
least-squares sense. To handle this issue, many robust PCA
approaches have been developed. L1-PCA [8] was initially
found to be better than the squared l2-norm-based PCA, the
function of the L1-PCA minimizes the l1-norm-based recon-
struction error. However, it usually has poor performance due
to its large computation requirements, and it lacks the rota-
tional invariance. In order to mitigate the problem, a robust
PCA based on the rotational invariant R1-norm, called the
R1-PCA [9], has been proposed to find the optimal basis vec-
tors that will alleviate the impacts of outliers. However, the
R1-PCA model is solved using the subspace feature learning
algorithm, which results in a very slow convergence rate. To
seek a more robust projection matrix, Kwak [10] uses the l1-
norm to measure the variance and proposes the PCA-L1 with a
greedy algorithm (PCA-L1 greedy). In order to handle the con-
vergence problem, Nie et al. proposed a nongreedy algorithm
(PCA-L1 nongreedy) [11], which has a closed-form solution
in every iteration when convergence exists.

The aforementioned methods for image classification gener-
ally convert the input image data into 1-D vectors. However,
this process gives rise to the loss of inherent spatial (struc-
tural) information in an image. In order to leverage more
structural information and improve performance, Yang et al.
proposed the 2DPCA [12], which discards the transfor-
mation between the 1-D vector and images and avoids
destroying the topology structures of image pixels. Motivated
by the 2DPCA, many image-as-matrix methods have been
developed, such as the 2DLDA [13] and the multilinear PCA
(MPCA) [14]. All of these 2-D-based methods have been
empirically shown to perform better compared to their corre-
sponding methods [15], [16]. Inspired by the l1-norm PCA, the
2DPCA-L1 [17] and the 2DPCAL1-S [18] imposed the sparse
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constraint in the 2DPCA-L1 and successively appear. More
important, the robust 2DPCA-L1 with a nongreedy algorithm
(2DPCA-L1-nongreedy) is found [19].

Compared with the traditional PCA/2DPCA, the l1-norm-
based PCA/2DPCA technique is robust, but it lacks rotational
invariance. Most existing robust PCA/2DPCAs only con-
sider one of the two factors: the covariance matrix and the
reconstruction error. Therefore, Wang and Gao proposed the
AnglePCA [20] and F-2DPCA [21]. These methods alleviate
the sensitivity to outliers in some ways by synthesizing the
above two factors. An F-norm-based model can obtain robust
projection matrices instead of using the squared F-norm and
has become an active topic in dimensionality reduction and
data mining [21]–[24]. In addition, a l2-norm-based model can
retain the PCA’s desirable properties (rotational invariance and
the weighted matrix related to the covariance matrix and the
reconstruction error). However, AnglePCA and F-2DPCA fail
to extract internal information and more complicated struc-
tures from the image matrix. These methods also lack robust
generalizable performance [25].

In this article, we first propose two novel center-weight-
based models, called the centered PCA (C-PCA) and the
generalized centered 2DPCA with l2,p-norm minimization
(GC-2DPCA). In these two models, the first point of inno-
vation is that we consider the data similarity in order to better
retain the data structures. It is similar to the linear KPCA
(L-KPCA) [26], but L-KPCA explicitly neglects the recon-
struction error. By leveraging this insight, our proposed models
can learn the connected projection matrices for recognition
and reconstruction tasks. Even though these ideas are simple,
applying them together is powerful for recognition tasks. The
C-PCA can reserve the structural information of data by mea-
suring the similarity between the data points, and it can also
retain the PCA’s original desirable properties such as rotational
invariance. The C-PCA only applies the centered-weighted
concept in order to resolve the loss of structural information.
Thus, our approaches are very scalable and can be readily
adapted to other PCA models. In addition to this, the second
point of innovation is that we propose a novel formula for the
2DPCA, namely, the GC-2DPCA. The GC-2DPCA has robust
generalizable performance. The GC-2DPCA can learn efficient
and robust projection matrices to suppress outliers by utiliz-
ing the variations between each row of the projected matrix
and employing power p of the l2,1-norm. The l2,1-norm-based
metric is very robust to noise and outliers in data [27]–[31],
which is a promising property in reality because most real data
contain various noise, errors, or even gross corruptions.

Our main contributions are as follows.
1) We propose the C-PCA model to effectively preserve

the structural information of the data. In order to assess
the scalability of our model, we extend from the vector-
based AnglePCA to the vector-based C-AnglePCA.

2) We propose the matrix-based GC-2DPCA model. This
model not only can effectively preserve the structural
information for data but also obtains a more robust
projection matrix for data.

3) The convergence analysis of the objective function for
the GC-2DPCA is given. We demonstrate that the

GC-2DPCA generally obtains a more efficient recogni-
tion weighted matrix and a more robust reconstruction
weighted matrix than other 2DPCAs.

II. RELATED WORKS

Assume that we have a set of n sample images X =
[x1, x2, x3, . . . , xn], where xi ∈ Rd (i = 1, 2, . . . , n) denotes
the ith training image. Suppose that the data are centered, that
is, the mean from the data is zero. d is the dimensionality of
the sample space. The traditional PCA method maximizes the
variance in the data in the project subspace in order to obtain
the projection matrix W = [w1, w2, . . . , wk] ∈ Rd∗k, and to
solve the following optimization function:

max
WT W=I

Tr(WTStW) = max
WT W=I

n∑

i=1

∥∥WTxi
∥∥2

2 (1)

where Tr(·) is the trace operator of a matrix, I is the iden-
tity matrix, and St = ∑n

i=1 xixT
i is the covariance matrix.

We denote the l1-norm and the l2-norm of a vector by
‖ · ‖1 and ‖ · ‖2, respectively. In fact, the function (1) can be
reformulated as the objective function (2) [4]

min
WT W=I

n∑

i=1

∥∥xi − WWTxi
∥∥2

2. (2)

The objective functions (1) and (2) employing the squared
l2-norm, are more sensitive to outliers, and they magnify
the effect of outliers. It is well known that the l1-norm is
robust to outliers. Therefore, many robust methods that directly
substitute the l1-norm for the squared l2-norm have been
proposed [10], [11]

max
WT W=I

n∑

i=1

∥∥WTxi
∥∥

1. (3)

The solution of the objective function (3) is not equivalent
to function (2), since function (2) is the true goal of PCA.
Therefore, Wang et al. proposed the AnglePCA, which consid-
ers the relation between the reconstruction error and variance
of projected data [20]. It seeks the projection matrix W using
the objective function

max
WT W=I

n∑

i=1

∥∥WTxi
∥∥

2∥∥xi − WWTxi
∥∥

2

. (4)

While the KPCA allows us to generalize the traditional
PCA to a nonlinear dimensionality reduction, its reconstruction
error for data is not equivalent to the objective function (2).
Since the aforementioned robust PCA methods are related to
the learning linear subspace projection matrix, we only con-
sider the simple linear kernel k(x, y) = (xTy). The essence
of the kernel is to compare the similarity between two objects
and, thus, the L-KPCA fulfills the following objective function
using a kernel trick [26]:

max
WT W=I

n∑

i=1

∥∥WTHxi
∥∥2

2 (5)
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where H = I − (1/n)11T is the centering matrix. To extract
more structural information, we propose a centered projec-
tion matrix method. Meanwhile, the weighted matrix-based
reconstruction error to the function (2) is preserved.

For the 2DPCA model, we assume that the data are denoted
by X = [X1, X2, . . . , Xn] ∈ Rr×c×n, which is centralized, that
is,

∑n
i=1 Xi = 0. 2DPCA seeks the projection matrix W =

[w1, w2, . . . , wk] ∈ Rc×k by [12]

max
WT W=I

Tr
n∑

i=1

WTXT
i XiW = max

WT W=I

n∑

i=1

‖XiW‖2
F (6)

where ‖ · ‖F denotes the Frobenius norm.
The F-2DPCA adopts an intuitive and reasonable use of

the F-norm instead of the squared F-norm, and it is equiva-
lent to function (6). The objective function (7) is called the
F-2DPCA [21], and it is denoted as follows:

min
WT W=I

n∑

i=1

∥∥Xi − XiWWT
∥∥2

F

→ min
WT W=I

n∑

i=1

∥∥Xi − XiWWT
∥∥

F. (7)

III. OUR SOLUTIONS: C-PCA AND GC-2DPCA

We present two novel dimensionality reduction models
based on the PCA and the 2DPCA, namely, the C-PCA and
the GC-2DPCA, for data classification and representation.

A. Centered PCA

In this section, we consider combining the PCA and the L-
KPCA in order to maximize our robustness and efficiency. We
use the centering matrix and propose the C-PCA. The C-PCA
can well characterize the geometric structure. In the previous
research, there is no difference between recognition accuracy
weight and reconstruction error weight as they are regarded
(without distinction) as the same weight. We first propose the
projection matrices Wre and Wra to calculate them separately.
We seek the projection matrices Wre and Wra by solving the
functions (8) and (9) as follows:

max
WT

reWre=I

n∑

i=1

∥∥WT
rexi

∥∥2
2 (8)

max
WT

raWra=I

n∑

i=1

∥∥∥∥
(

H−1∗ Wra

)T
xi

∥∥∥∥
2

2

= max
WT

raWra=I

n∑

i=1

Tr
(
(HWra)Txix

T
i HWra

)

= max
WT

raWra=I

n∑

i=1

∥∥WT
raHxi

∥∥2
2 (9)

where Wra represents the recognition accuracy weight, Wre

represents the reconstruction error weight, and H−1∗ represents
the pseudoinverse matrix of H.

H is an idempotent matrix. We have the following proper-
ties: 1) its eigenvalues can only be 0 or 1 and 2) trace(H) =
rank(H) = n − 1, which means that H−1 does not exist; and
H = H−1∗ and H = HT .

Algorithm 1 : C-PCA

Input: data set
{
xi ∈ Rd:i = 1, 2, · · · , n

}
, k. where xi is

normalized.
1: Calculate the reconstruction weight covariance matrix

XXT

2: Solve Wre = max
WT W=I

Tr((Wre)
TXXTWre). The columns’

vectors of the projection matrix Wre are composed of the
first k eigenvectors of XXT corresponding to the k largest
eigenvalues.

Output: The reconstruction weight Wre and the recognition
weight Wra = HWre

The KPCA with the linear kernel is exactly equivalent to
the standard PCA [7]. That is, after the kernel Gram matrix is
reduced to the form XTX, the kernel Gram matrix is equiva-
lent to the standard Gram matrix as the principal components
will not change. After establishing the connection between
(2) (PCA) and (5) (L-KPCA), we can also derive the conclu-
sion that (8) is equivalent to (9). From the above analysis, we
can obtain Wre = H−1∗ Wra and the solution of (9), that is,
Wra = HWre.

The established equivalence of the two equations can help
to derive the new model. In fact, based on the connection,
we can improve the efficiency of the proposed method. The
detailed analysis is as follows. The PCA is better than the
L-KPCA in terms of the data reconstruction loss, but the L-
KPCA is better than the PCA when considering the similarity
between data. Therefore, we combine the two equations in
order to generate a new model. The projection matrix that is
learned by the new model will naturally have the advantages
of the PCA and the L-KPCA models, which are improved by
classification and robustness.

First, (8) is equivalent to (1), which is the traditional PCA.
Second, we consider Theorem 1 and, thus, (9) is equivalent
to (5), which is the L-KPCA. The projection matrix of the
former represents the reconstruction error weight, and the latter
represents the recognition accuracy weight.

If there is no special description below, in this article, we
use W to represent Wre.

Algorithm 1 lists the pseudocode for solving the
function (8).

Therefore, the C-PCA can obtain two different but con-
nected projection weighted matrices. Specifically, the recog-
nition accuracy weight is equivalent to the matrix in the
L-KPCA [26], and the reconstruction error weight is the same
as the weight in the traditional PCA. The C-PCA has one addi-
tional simple matrix multiplication operation than PCA; this
operation is not as complicated as the decomposition matrix,
so the C-PCA is slightly higher than PCA in average time con-
sumption. In order to analyze the connection of our method
with the L-KPCA, we first need the following theorem. Denote
Dx ∈ Rn×n as a distance matrix, where the (i, j)th element is
dx

ij = ‖xi − xj‖2
2.

Theorem 1: WTHDxHW = −2WTHXXTHW.
Proof: Since dx

ij = ‖xi − xj‖2
2 = xT

i xi + xT
j xj − 2xT

i xj, we
have Dx = diag(XXT)11T + 11Tdiag(XXT) − 2XXT , where
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Fig. 1. Data points and optimal projection directions of the three different
methods using the artificial dataset.

diag(XXT) is a diagonal matrix with the diagonal elements of
XXT . Note that H1 = 1TH = 0 and according to the definition
of H, we have WTHDxHW = −2WTHXXTHW.

According to Theorem 1, we can know that the L-KPCA
essentially seeks the recognition weight by minimizing the
distance between similar data points.

Theorem 2 [32]: The objective function (1) and the follow-
ing objective function are equivalent

max
WT W=I

∑

i,j

∥∥WT(
xi − xj

)∥∥2
2. (10)

According to Theorem 2, we know that the objective func-
tion of the conventional PCA (10) and the L-KPCA (5) is
not consistent to some extent. If H−1 exists, then (1) is abso-
lutely the same as (5). Equation (1) is more inclined to capture
the fine reconstruction error weight than (5). Meanwhile, the
recognition accuracy weight that is obtained by (5) is more
outstanding than that of (1). However, the C-PCA can take
into account the advantages of both and obtain two different
but connected projection weighted matrices. For example, we
randomly produce some outliers and two classified data points
using MATLAB. Then, we plot the optimal projection direc-
tions of the L-KPCA, PCA, and C-PCA using the artificial
dataset in Fig. 1.

Fig. 1 shows the following information. After the projection
of the sample points on the L-KPCA and C-PCA planes, the L-
KPCA and C-PCA have the same distinguishable effect in this
figure. However, the overall distance from the sample point to
the C-PCA hyperplane is closer than that of the L-KPCA.
Meanwhile, the overall distance from the sample point to the
C-PCA and PCA hyperplanes is the same. After the points
are projected onto the respective C-PCA and PCA planes, it
is shown that the C-PCA is better than the PCA in terms of
its distinguishability. In conclusion, Fig. 1 demonstrates that
the C-PCA acquires advantages of the L-KPCA and PCA.
Specifically, the C-PCA has good performance in classification
and robustness.

As mentioned in Section I, most PCA methods will lose
the structural information of the data. The idea of adopting the
PCA to the C-PCA is to used to solve the problem that exists in
most PCA methods. We solve the reconstruction weight using
the original 1-D method, and then we can obtain the recog-
nition weight using the transformation formula. According to
the previous analysis of Theorem 1, the transformation for-
mula essentially seeks the recognition weight by minimizing
the distance between similar data points. For example, the idea
of our C-PCA model is applied to AnglePCA, which forms a
C-AnglePCA to improve scalability.

B. Generalized Centered 2DPCA With the l2,p-Norm
Minimization

Recall that the proposed C-PCA only considers optimizing
the recognition matrix. In this section, we propose the GC-
2DPCA. We extend the proposed C-PCA to its 2-D robust
version and develop a novel robust 2DPCA with special l2,p-
norm minimization.

By simple algebra, we have

min
WT W=I

n∑

i=1

∥∥Xi − XiWWT
∥∥2

F

= min
WT W=I

n∑

i=1

r∑

j=1

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥2

2 (11)

where Xi(j, :) denotes the jth row of Xi.
We propose a generalized 2DPCA formulation

min
WT W=I

n∑

i=1

r∑

j=1

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥2

2

→ min
WT W=I

n∑

i=1

r∑

j=1

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥p

2 (12)

where 0 < p ≤ 2.
Equation (12) uses the special l2,p-norm to replace the

squared l2-norm in (11) and achieves robustness; meanwhile,
(12) adopts a similar idea as (4) and (7). The objective
function (12) is called GC-2DPCA. Compared with the F-
2DPCA, our proposed method can make further use of the
variations between each row of the image matrix, and the
GC-2DPCA is more robust to outliers. Meanwhile, we also
keep a predominant property (i.e., rotational invariance), and
given an arbitrary rotation matrix � (��T = I), we have
‖�Xi(j, :)W‖p

2 = ‖Xi(j, :)W‖p
2.

In fact, the objective function (12) can be further written in
the following form:

min
WT W=I

n∑

i=1

r∑

j=1

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥p

2

= min
WT W=I

∑

i,j

Tr(�)Eij (13)

where � = Xi(j, :)TXi(j, :) − WTXi(j, :)TXi(j, :)W

Eij = ∥∥Xi(j, :) − Xi(j, :)WWT
∥∥p−2

2 (14)
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is a reconstruction error weight containing image row
information.

Thus, the above (13) objective function can be written as

max
WT W=I

n∑

i=1

r∑

j=1

Tr
(
WTXi(j, :)TXi(j, :)W

)
Eij. (15)

We are considering a new optimization approach to solve
the two unknown variables W and Eij in the maximization
function (15). By means of decoupling the functional relation
between W and Eij, we can optimize the two variables in an
alternative way by optimizing one variable while keeping the
other fixed.

Specifically, when E(t)
ij is known, we can learn W by max-

imizing (15). In the (t + 1) iteration, with E as a constant
matrix, its ith row and jth column element is E(t)

ij , and the
function (15) finally becomes

max
WT W=I

Tr
(
WTCW

) = max
WT W=I

Tr
(
WTZ

)
(16)

where C = ∑n
i=1

∑r
j=1 Xi(j, :)TEijXi(j, :), Z = CW.

We solve the optimization function (15) based on
Theorem 3.

Theorem 3: Suppose the SVD of Z is Z = P�QT , where
P ∈ Rc×c, � ∈ Rc×k, and Q ∈ Rk×k. The solution of the
optimization function (15) is derived as W = PIc×kQT .

Proof: Based on the SVD of Z, we have

Tr
(
WTZ

) = Tr(WTP�QT)

= Tr
(
�QTWTP

) = Tr(��)

=
∑

j

λjjθjj

where � = QTWTP; and λjj and θjj represent the (j, j)th ele-
ment of matrices � and �, respectively. Recall the constraint
of WTW = I, where we can have ��T = I and θjj ≤ 1.
Consider the fact that 0 ≤ λjj and λii is a singular value of Z.
The equality holds when θjj = 1. In that way, (16) reaches the
maximum with � = I. Combining � = I and � = QTWTP
yields W = P�TQT = PIc×kQT .

Now, we can extend the objective function (16) to the
formulation of the centered 2DPCA. Algorithm 2 lists the
pseudocode of solving the following problem:

max
WT

raWra=I

n∑

i=1

Tr

((
H−1∗ Wra

)T
CH−1∗ Wra

)

= max
WT

reWre=I

n∑

i=1

∥∥WT
reCWre

∥∥2
2

= max
WT

reWre=I

n∑

i=1

∥∥WT
reZ

∥∥2
2 (17)

where Wra = HWre is the recognition weighted matrix.

C. Convergence Analysis

A similar convergence conclusion to PCA can be estab-
lished for the C-PCA in Algorithm 1. For brevity, we skip the
convergence analysis in this article.

Algorithm 2 : GC-2DPCA

Input: data set
{
Xi ∈ Rr×c : i = 1, 2, · · · , n

}
, k, p, where

Xi is normalized. Initialize W(1)
re ∈ Rc×k which satisfies

(W(1)
re )

T
(W(1)

re ) = I, t = 1.
1: while not converge do
2: For all training samples, calculate E(t)

i,j (i =
1, · · · , N; j = 1, · · · , r) by Eq. (14);

3: Calculate Z(t) according to Eq. (16), i.e., Z(t) =
n∑

i=1

r∑
j=1

Xi(j, :)TEijXi(j, :)W(t)
re ;

4: Calculate the SVD of Z as Z = P�QT , then W(t+1)
re =

PQT ;
5: t = t + 1;
6: end while

Output: The reconstruction weight Wre and the recognition
weight Wra.

Theorem 4: Algorithm 2 will converge to a local optimal
solution of the objective function (13).

Proof: The Lagrangian function of the function (13) is

L(W) =
∑

i,j

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥p

2

− Tr
(
�T(

WTW − I
))

(18)

where the Lagrangian multiplies � = (�pq) for enforcing the
orthonormal constrains WTW = I. The KKT condition for the
optimal solution specifies that the gradient of L must be zero,
that is

∂L(W)

∂W
= p

∑

i,j

(∥∥Xi(j, :) − Xi(j, :)WWT
∥∥p−2

2

)

Xi(j, :)TXi(j, :)W − W�T = 0. (19)

By simple algebra, we have
∑

i,j

(
∥∥Xi(j, :) − Xi(j, :)WWT

∥∥p−2
2 )

Xi(j, :)TXi(j, :)W = W(�/p)T . (20)

According to the aforementioned analysis, the optimal solu-
tion of the objective function (16) can be obtained in step 4
in Algorithm 2. Thus, the converged solution of Algorithm 2
satisfies the KKT condition of the objective function (16). The
Lagrangian auxiliary function (16) is

L2(W) = 2Tr
(
WTZ

) − Tr
(
�T

1

(
WTW − I

))
. (21)

Taking the derivation of (21) with respect to W and setting
it to zero, we have

Z = W�1. (22)

Equation (22) is formally similar to (20). The main dif-
ference between (20) and (22) is that W of Z is known
in each iteration in Algorithm 2. Suppose we obtain the
optimal solution W∗ in the (t + 1)th iteration; thus, we have
W∗ = W(t) = W(t+1). According to the definition of Eij, we
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can find that (22) and (20) are the same. It means that the con-
verged solution of Algorithm 2 satisfies the KKT condition of
(13), that is

∂L

∂W

∣∣∣∣
W=W∗

= 0. (23)

Thus, the converged solution of Algorithm 2 is a local
solution of (13).

IV. RELATIONSHIP TO THE RELEVANT 2DPCA METHODS

In this section, we show the relationship of GC-2DPCA with
the other related robust 2DPCA algorithms.

A. Connection to Standard 2DPCA

When p = 2, the weighted Eij becomes a constant and, thus,
the objective function (12) becomes

W∗ = arg min
WT W=I

∑

i,j

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥2

2 (24)

in which case the GC-2DPCA reduces to the standard
2DPCA [12]. The standard 2DPCA applies the squared F-
norm, which is very sensitive to noise and outliers in given
data, in order to model the reconstruction error. This may result
in higher reconstruction errors in practice since most real data
contain various noise, errors, or even corruptions.

B. Connection to R1-2DPCA and OMF-2DPCA

If p = 1, then the objective function (12) becomes

W∗ = arg min
WT W=I

∑

i,j

∥∥Xi(j, :) − Xi(j, :)WWT
∥∥

2. (25)

To some extent, that is equivalent to the objective function and
that is called the R1-2DPCA [33].

If we optimize the mean X̄ in the objective function, then
we can obtain

W∗ = arg min
WT W=I

∑

i,j

∥∥Xi(j, :) − X̄ − (Xi(j, :) − X̄)WWT
∥∥

2. (26)

To some extent, this is equivalent to the objective function
that is called the OMF-2DPCA [23]. In the objective func-
tion (25) or (26), the reconstruction error of each data point is
measured using the l2,1-norm rather than the squared F-norm
as in the standard 2DPCA. Thus, compared with the stan-
dard 2DPCA, the R1-2DPCA and OMF-2DPCA are robust to
outliers. However, the large reconstruction error still plays an
important role in the objective function (25) or (26).

By referring to the related papers [2], [21], [23], [33], we
can find that the experimental performance of these methods
is almost the same as that of the F-2DPC and Angle-2DPCA.
Therefore, in Section V, only the F-2DPCA and Angle-2DPCA
are assessed.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct several experiments to evaluate
the proposed C-PCA and GC-2DPCA models on three pub-
lic face databases (CMU-PIE, AR, and Extended Yale B) and

Fig. 2. Images with or without occlusion of one person from the CMU-PIE
database.

compare them to our proposed vector- and matrix-based meth-
ods, respectively. For the 1-D benchmark models, we choose
the following representative methods: the traditional PCA [4],
the PCA-L1 greedy [10], the PCA-L1 nongreedy [11], the HQ-
PCA [34], and the AnglePCA [20]. For the 2-D benchmark
models, we choose the 2DPCA [12], the 2DPCA-L1 [17], the
2DPCAL1-S [18], the N-2DPCA [35], and the F-2DPCA [21].

To compare our approach with the benchmarks, we used
the same setting with [20] and [21] except for the range
of noise ratio. The parameter used in the cited papers is
intervenient with the range 0.05–0.15, and our parameter is
intervenient with range 0.05–0.35 as we want to verify the
noise immunity and recognition rate of our proposed method
to a greater extent. In addition, we tune p from {0.5, 1, 1.5}
for the GC-2DPCA model.

In our experiments, we use the 1-nearest neighbor (1NN)
and set p = 1.5 for the classification. We set the number of
projection vectors as 300 and 25 in the 1-D and 2-D methods,
respectively. Furthermore, we use the following reconstruction
error to measure the quality of 2-D methods:

error = 1

N

N∑

i=1

∥∥∥Xclean
i − Xclean

i WreWT
re

∥∥∥
F

(27)

where N is the number of training data, Wre is the learned
reconstruction error weight, and Xi is the ith clean training
sample.

The CMU-PIE face database [36], from which 1632 frontal-
face images of 68 individuals are chosen, is used to assess the
intraclass variation, such as illumination and expression. In
our experiment, we choose 21 images of each person, among
which we use 10 images for training and 11 images for test-
ing. In addition, some training images and test images for each
person have white or black dots added as noise. We randomly
added the noise to 30% of the pictures. The positions of out-
liers are randomly distributed. The location of noise is random,
and the ratio of the noise pixels to the number of image pix-
els is set from 0.05 to 0.35. Each image is in grayscale and
normalized to 32 × 32 [6]. Fig. 2 shows some samples with
or without occlusion of one person from the CMU-PIE face
database.

The AR facial database [37] contains 3120 color images
corresponding to 126 people’s faces. The images were divided
into two sessions. Each session consists of 13 images, which
is seven frontal face images and six images with occlusion,
such as scarf or glasses. Each session presents the variation
of expression, illumination condition, and occlusion. In our
experiment, we select randomly 13 images of everyone for
a total of 1605 images as the training set and the remaining
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Fig. 3. Images of one person under two different sessions from the AR
database.

for testing. We randomly select the training and test images of
each person to add occlusion as that in the CMU-PIE database.
We manually cropped the face data portion and resized it to
50 × 40 [12]. We display some samples in Fig. 3.

The Extended Yale B face database [38] includes 38 individ-
uals with 64 frontal-face images of each individual; a person’s
64 images were taken from five different angles and divided
into five subsets; we choose 2414 pictures from it. In the
experiment, 32 images of each individual are used for the
training data, and the remaining images are used for testing.
We select randomly training and test images of each person to
add occlusion as that in the CMU-PIE database. Each image
is in grayscale and normalized to 32 × 32 [32].

A. Recognition Rate Comparison for PCA/2DPCA

Figs. 4(a), 5(a), and 6(a) show the recognition performance
with different feature numbers for the C-PCA and C-
AnglePCA compared with other 1-D methods. Similarly, the
recognition performance with different feature numbers for the
GC-2DPCA compared with other 2-D methods is presented
in Figs. 4(b), 5(b), and 6(b). Table I lists the average recog-
nition rate (and the corresponding standard deviation) on
three databases for the 2-D methods. To validate whether our
method is better than the others with respect to the mean
value in Table I, we check how significant these results are
by employing the t-test in Table II. For the sake of simplicity,
we only perform t-tests on the recognition rate of both the
F-2DPCA and GC-2DPCA. We set the default significance
level as α = 0.05, the elements of Table II represent the
h(sig), where h is a Boolean-type variable, indicating whether
to accept the null hypothesis, and sig is the probability that the
null hypothesis can be accepted. When sig is a small probabil-
ity, the null hypothesis is questioned. The t-tests’ experiments
are performed by using the ttest2 function in MATLAB. In
the experiment, the p in GC-2DPCA is the optimal value in
each dataset in the range of {0.5, 1, 1.5}.

Figs. 4(a), 5(a), and 6(a) show that our method is easily
extended to the existing PCA models. For example, the result
of the C-AnglePCA is superior to the original AnglePCA.
From the results of Figs. 4–6, we can find that our methods are
generally excellent to the existing state-of-the-art algorithms.
Even if we add some noise to the three public datasets, our
methods maintain better properties of the traditional PCA,
and keep the “close” data point close after dimensionality
reduction.

Table I shows that our approach achieves the best recogni-
tion accuracy compared to the others. The main reason is that
the GC-2DPCA employs the l2,1-norm as the distance metric

TABLE I
AVERAGE RECOGNITION ACCURACY (AND THE CORRESPONDING

STANDARD DEVIATION) OF THE SEVEN METHODS ON THREE DATABASES

TABLE II
t-TEST VALUE OF THE RESULTS IN TABLE I

in the object function of the 2DPCA, and it solves the optimal
solution using a nongreedy algorithm which has a closed-
form solution in each iteration and local convergence. Our
approaches also well characterize the geometric structure of
the data by considering the similarity of the data. Overall, our
experiments show that nongreedy strategies are indeed better
than greedy strategies.

The null hypothesis is that the average recognition accu-
racies of the GC-2DPCA and F-2DPCA are from the same
distribution at a 0.05 significance level. From Table II, h = 1,
thereby indicating that the null hypothesis is rejected at the
0.05 significance level. In addition, the possibility of the orig-
inal hypothesis being established (sig = 0.0005) is very small
on CMU PIE, and the other two datasets are the same. It
is shown that the result of the algorithm GC-2DPCA can
be statistically determined to be larger than the result of the
F-2DPCA (i.e., the comparison of the mean values of the
two groups of data is meaningful in Table I). Combined with
Table I, our method can be proved to have better performance
than other benchmarks.

B. Reconstruction Error Comparison for 2DPCA

Fig. 7 presents the convergence curve of the GC-2DPCA
on three databases. It can be seen that our method can mono-
tonically decrease the value of the objective function (12) in
each iteration. To be fair, we set the number of projection
matrices 25 and set the number of iterations as 50.
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Fig. 4. Recognition accuracy versus feature number vectors on the CMU PIE database with different methods. (a) C-PCA. (b) GC-PCA.

Fig. 5. Recognition accuracy versus feature number vectors on the AR database with different methods. (a) C-PCA. (b) GC-PCA.

Fig. 6. Recognition accuracy versus feature number vectors on the Extended Yale B database with different methods. (a) C-PCA. (b) GC-PCA.

Table III lists the average time consumption of the 2-D
methods on the three databases, From it, we can see that the
running time of the GC-2DPCA is similar to those of the
2DPCA-L1-nongreedy. Although our method is slower than

the classic 2DPCA, it is better than other methods with respect
to the run consumption time. Table III and Fig. 7 illustrate that
our proposed method is fast and robust.

In Table III, we find the following results.
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Fig. 7. Convergence cure of our method on three datasets.

Fig. 8. Reconstruction error of the seven methods under ten experiments on
the CMU PIE database.

1) The operation of the GC-2DPCA is more time con-
suming than the traditional 2DPCA. The 2DPCA only
needs one-step decomposition, but the GC-2DPCA has
a closed-form solution and local convergence using a
nongreedy algorithm.

2) In all nongreedy strategies, the 2DPCA-L1-nongreedy is
better than the GC-2DPCA. That is because both algo-
rithms make full use of the row information of the image
matrix. Meanwhile, the GC-2DPCA considers more
optimization strategies than the 2DPCA-L1-nongreedy.

3) In all nongreedy strategies, the GC-2DPCA is better than
the F-2DPCA. The better performance is attributed to
the faster calculation of the vector form compared to
the matrix form.

Figs. 8–10 present the reconstruction error of the seven
methods in the ten experiments for the three datasets. Table IV
lists the average reconstruction error and the corresponding
standard deviation of the 2-D methods on three databases. The
three datasets have random noise added 10 times each, and

Fig. 9. Reconstruction error of the seven methods under ten experiments on
the AR database.

Fig. 10. Reconstruction error of the seven methods under ten experiments
on the Extended Yale B database.

each algorithm is run on these datasets. From these results, it
can be seen that our method is generally superior to the other
methods.

From Table IV, we can observe the following.
1) The 2DPCA is inferior overall to the other six meth-

ods. The main reason is that the 2DPCA employs the
squared F-norm as a distance metric. The robustness of
the 2DPCA is affected. The GC-2DPCA algorithm we
proposed performs better than the other methods among
the datasets.

2) Our method is overall superior to the F-2DPCA. It is likely
due to the image’s covariance matrix, while F-2DPCA
only directly uses the image’s covariance matrix.

3) Combined with Table I, when we set p = 1,the GC-
2DPCA is overall superior to the F-2DPCA for both
recognition and reconstruction tasks. It is because it can
further obtain robust and efficient solutions according to
the characteristics of the data. We also discussed earlier
that most existing l2,1-norm-based 2DPCA methods are
special cases of our GC-2DPCA.

Authorized licensed use limited to: Macquarie University. Downloaded on November 07,2020 at 07:19:52 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE III
AVERAGE TIME CONSUMPTION (AND THE CORRESPONDING STANDARD

DEVIATION) OF THE SEVEN METHODS ON THREE DATABASES

TABLE IV
AVERAGE RECONSTRUCTION ERROR (AND THE CORRESPONDING

STANDARD DEVIATION) OF THE SEVEN METHODS ON THREE DATABASES

TABLE V
t-TESTS OF THE RESULTS IN TABLE IV

Table V shows the significant of the results in Table IV
by employing t-tests. The null hypothesis is that the average
reconstruction errors of the GC-2DPCA and F-2DPCA are
from the same distribution at a 0.05 significance level. From
Table V, we can observe that: h = 1, sig = 8.4e − 12, thereby
indicating the null hypothesis is rejected at the 0.05 signif-
icance level. It is shown that the results of the algorithm
GC-2DPCA can be statistically determined to be larger than

TABLE VI
RESULTS OF FIRST ORDER (SECOND ORDER) ON THREE DATABASES

the results of the F-2DPCA (i.e., the comparison of the means
of the data of the two groups is meaningful in Table IV).
The results of the algorithm GC-2DPCA and the algorithm
2DPCA-L1 have the same situation on CMU PIE and AR
but have not Extended Yale B, where the results of the GC-
2DPCA and 2DPCA-L1 are very similar. We believe this is
because the L1-based method has some robustness advantages,
especially with the Extended Yale B dataset. The t-test further
proves that our method is superior to the other benchmarks in
Table IV.

In this article, we first obtain the reconstruction weight
and then obtain the recognition weight by the transformation
formula in Algorithm 1, namely, first order. If we change
the order of the solution, namely, second order, then the
recognition performance remains almost the same as that in
Table VI, but the reconstruction performance is degraded. The
reason is that the latter depends on (2), and the transforma-
tion formula will cause (2) and (8) to be inconsistent, which
will inevitably affect performance. Algorithm 2 has the same
situation. Therefore, we adopt the first order.

VI. CONCLUSION

In this article, we proposed two novel PCA and 2DPCA
dimensionality reduction models, namely, the C-PCA and
GC-2DPCA, for data classification and representation. They
use the centered weights to measure the similarity of the
data points so that the structural information of the data
can be preserved. In addition, the GC-2DPCA model retains
the rotational invariance and obtains generalized l2,1-norm
performance. The C-PCA and C-AnglePCA show that our
method is easily extended to corresponding upgraded versions
of the existing methods. To handle the GC-2DPCA model, we
proposed an efficient iteration algorithm, which has a closed-
form solution at each iteration. The experimental results on the
CMU-PIE, Extended Yale B, and AR databases have illustrated
the robustness and effectiveness of our proposed methods.
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