
BigVM: A Multi-Layer-Microservice-Based
Platform for Deploying SaaS

Tianlei Zheng
School of Computing and Information Systems

The University of Melbourne

Melbourne, Victoria, Australia

Email: tianleiz1@student.unimelb.edu.au

Yuqun Zhang
Department of Computer Science and Engineering

Southern University of Science and Technology

Shenzhen, Guangdong, China

Email: zhangyq@sustc.edu.cn

Xi Zheng
School of Information Technology

Deakin University

Melbourne, Victoria, Australia

Email: xi.zheng@deakin.edu.au

Min Fu
Department of Computing

Faculty of Science and Engineering

Macquarie University

Data61, CSIRO

Sydney, Australia

Email: min.fu@data61.csiro.au

Xiao Liu
School of Information Technology

Deakin University

Melbourne, Victoria, Australia

Email: xiao.liu@deakin.edu.au

Abstract—With the advent of Software-as-a-Service (SaaS),
SaaS developers are facing many more challenges associated with
multi-tenancy and dramatically increased number of users, e.g.,
scalability, availability, increased cost of development/testing/de-
ployment, high cost of customization. As most of them are highly
common, it is becoming very desirable if a generic and powerful
deployment platform can be designed. For such a purpose, in
this paper, a new platform namely BigVM is proposed to isolate
SaaS developers from deployments and bridge the gap between
the best practices and the real-world adoptions.

BigVM provides microservice-oriented deployment kits to
enable SaaS developer to create, customize, and deploy SaaS
solutions in a multi-layer-microservice-based manner, which can
utilize fault tolerance, optimize the resources, and scale in/out
the underlying resources not only based on resource utilization
but also on the non-functional requirements from the system,
e.g., timing constraint. A set of experiments are implemented
in sysbench to test one of BigVM’s core components—Docker
containers. The results show that Docker containers can achieve
desirable performance in terms of CPU workload and file I/O,
thus laying a solid foundation for our future work.

I. INTRODUCTION

One of the major reasons that SaaS (Software as a Service)

is becoming increasingly popular is that software applications

do not have to be developed through a long lifecycle as on-

premise development such that new reports, data entries, etc.,

could be delivered or added on the fly. Many challenges for

SaaS developments arise when applications are featured being

real-time, automated, or batched where a minor change might

risk breaking the critical business processes.

Some best practices have been concluded to deal with those

challenges. However, they are not always employed for con-

figuration managements in SaaS environments for the reasons

including 1) the applications might be supported by business

instead of IT departments; 2) SaaS administrators may not

be familiar with the practices of configuration and release

management; 3) deploying an application often requires both

manual and automated steps [1].

In this paper, a new framework namely BigVM is proposed

to bridge the gap between the best practices and the real-

world adoptions. BigVM aims at resolving the hassles in

multiple-tenant SaaS developments and deployments for the

developers. In particular, BigVM focuses on identifying the

microservices that are highly reused and standardized in mul-

tiple applications. A set of standardized component interfaces

and service communication protocols are implemented such

that these microservices can be fully maintained in BigVM.

Furthermore, BigVM enables a multi-layer microservice hier-

archy, where the lower-layer microservices are featured being

“black box” such that SaaS developers only need to deal with

higher-layer microservices by automatically customizing the

lower-layer microservices. As a result, SaaS developers can

skip deploying a number of microservices, e.g., OS-resource-

intensive microservices.

BigVM can enhance system performances by applying

certain components. Particularly, a microservice orchestration

engine is used to orchestrate microservices. A workflow engine

is applied such that microservices can be choreographed and

dynamically customized during runtime.

To evaluate and demonstrate how BigVM benefits SaaS

development, a set of experiments that test one of its

components—Docker container are implemented in sysbench.

The experimental results indicate that Docker containers can

achieve desirable performance in terms of CPU workload

and file I/O, which validates the advantages of the BigVM

architecture.

The remainder of this paper is organized as follows. Sec-

tion II introduces the related work. Section III demonstrates

2017 Fifth International Conference on Advanced Cloud and Big Data

978-1-5386-1072-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CBD.2017.16

45

2017 Fifth International Conference on Advanced Cloud and Big Data

978-1-5386-1072-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CBD.2017.16

45

Authorized licensed use limited to: Macquarie University. Downloaded on December 10,2020 at 16:47:01 UTC from IEEE Xplore. Restrictions apply.

BigVM with its associated features and potential advantages.

Sections IV demonstrates the experimental results which show

the advantages of BigVM. Section V concludes this paper and

points out the future work.

II. RELATED WORK

Deploying SaaS has been a long-term research topic. A

framework that provisions applications and their associated

infrastructure using workflows are presented in [2]. In [3],

explicit variability models are proposed to systematically de-

rive customization and deployment information for individual

SaaS tenants. Specifically, these models can be derived by the

already deployed SaaS application for handling new tenants.

Another set of approaches that automatically configure tenant-

specific applications are proposed in [4] based on feature

modeling and XML filtering techniques. They are evaluated to

excel in execution time. However, none of these approaches

aim at handling microservice-based architectures, partly be-

cause microservice-based architectures have become popular

very recently. Some microservice-oriented approaches, such as

[5], can function only primitive so far.

Docker containers [6] are widely used in microservice-

based cloud infrastructure in industry. A reusable architec-

tural pattern address the problem of migrating a legacy Web

application to a cloud service is developed in [7] where

Docker containers are used to to deliver a multi-tenant cloud

service by re-using a legacy codebase. Docker containers are

used in edge computing [8] to offload the processing to the

edge from centralized to decentralized paradigm that indirectly

reduces application response time and improves overall user

experience. The security design and architecture quality using

multilateral security framework for Docker container are inves-

tigated in [9] by using OSI/TCP/IP stack model with reference

to Cloud service stack model and deployment stack model.

Microservices are used to specify implementation approach-

es for service-oriented architectures (SOA) to build flexible,

undependable, and deployable software systems [10]. Instead

of building a monolithic application in which features are

coded and deployed as a whole, microservice-based archi-

tecture implements each feature as independently running

services that communicate via some protocols like HTTP

or RPC. Microservices are widely considered being desir-

able to structure SaaS systems [5], because microservice-

based architecture not only allows for greater flexibility in

development (implementing each component using different

programming language and technology) and better scalability

(scaling each component independently), but also implies

fundamental changes in organizational structures. In traditional

organizational structures, IT professionals are usually grouped

into different departments by their skill sets, while microser-

vice teams are usually cross-skilled where developers and

operationals in one team take sole responsibilities for the entire

lifecycle of a product (from development to deployment to

maintenance). Such organizational structure allows for shorter

lifecycle development since developments, testings and re-

developments take place in one team and hence result in less

communication inefficiency and clearer responsibilities among

different departments. The recent hype of containerization

and all-in-one solutions, e.g., Docker container has inspired

the utilization of microservices due to its features such as

networking optimization and cluster management.

III. BIGVM ARCHITECTURE

BigVM is proposed to resolve the increasing challenges of

developing and deploying multiple-tenant solutions for SaaS

providers (In this paper, we use the terms “SaaS providers”

and “SaaS developers” to refer to organizations and individuals

who build and sell SaaS services, rather than people who build

business solutions based on customizing SaaS applications.).

In particular, BigVM can deliver SaaS applications with the

following advantages: 1) SaaS applications can be highly-

customizable while still providing strong abstraction (“black

box”). 2) Accordingly, it is possible for non-developers (e.g.,

SaaS providers) to conduct developments by themselves, e.g.,

assembling development kits as needed.

A. Domain Problems

Though microservices are considered to improve multiple-

tenant SaaS applications, some challenges regarding microser-

vices arise and many challenges regarding multiple-tenant

SaaS applications still remain unsolved. Some major ones are

listed as follows.

1) Inefficient deployment: The state-of-the-practice for con-

figuring microservice-based SaaS applications can be gener-

ally categorized to two groups—macro- and micro- deploy-

ments. Macro-configuration refers to the uniform deployments

for the overall system, where each microservice obtain almost

identical resource. Micro-configuration takes one more step

forward and focuses on configuring individual microservices.

It is difficult for original deployment schemes to stay optimal

under dynamic circumstances. For instance, by investigating a

giant Chinese food supply online service store that employs

more than 10,000 microservices in its SaaS applications, it

is observed that the inappropriate macro-deployment leads

to inaccurate resource allocation for individual microservices

while the inappropriate micro-deployment results in triviality.

A straightforward improvement can be realized by combing

these two methods. However, the efficacy is limited because

the combination policies are hard to be made accurate with

incidental holidays and/or joining and canceling branches and

customers when loads become dynamic and are hard to be

provisioned.

2) infrastructure limitation: No matter whether IaaS or

bare-metal servers are used, there is still an inevitable human

resource and equipment cost that the SaaS providers want

to avoid. Specifically, when on-premise solutions (physically

owned servers) are employed, it is quite often that engineers

need to take on-call duties in a 24/7 manner whenever servers

are overloaded. The on-call duties are about plugging-in new

servers, manually deploying software systems, etc. When

Cloud IaaS is used, SaaS providers do not need to plug-in

servers physically yet they still tend to encounter high costs

4646

Authorized licensed use limited to: Macquarie University. Downloaded on December 10,2020 at 16:47:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: BigVM Architecture and Deployment Environment

due to static provisioning. For either way, SaaS providers have

to pay addtional costs.

B. BigVM Architecture

BigVM is a solution to provide more automation for devel-

oping and deploying microservices in SaaS applications where

technical concerns can be separated from business concerns, so

that even non-technicians can compose microservices together

to achieve desirable features.

BigVM is deployed in a recent dominating manner as Figure

1 where the bottom layer can be either private cloud IaaS

that can be provisioned by OpenStack [11] implemented on

bare-metal servers or public cloud IaaS with the host OS

layer built above. Docker containers are layered on top of

the host OS layer, that are coordinated with the microservice

orchestration engine, e.g., Kubernetes [12]. This architecture

advances in fast launching time (within a few seconds) and

dynamic configuration due to its light-weight process isolation

features. Therefore, it could be helpful for provisioning the

SaaS applications and composing the corresponding microser-

vices, especially on the fly.

1) Multi-Layer Microservice Hierarchy: Nowadays, the

APIs of the underlying cloud infrastructure are widely used by

SaaS developers to build microservices. While each microser-

vice can achieve better agility and independence to form a

business process, a number of work regarding utilizing the

APIs that abstract the core OS codes from the underlying

hardware are highly reused and standardized, such as runtime

monitoring (file usage, memory usage, database usage, etc),

logger, and key-value (kv) storage. Usually they are common

to be implemented in all SaaS systems. By designing BigVM

to obtain or estimate the pre-knowledge of the resource

utilizations of these specific microservices and the potential

associated pitfalls, these microservices can be encapsulated

in Docker containers and orchestrated by the microservice

orchestration engine. Specifically, these microservices are de-

fined as platform microservices, that allows no single point of

failure for them.

Furthermore, BigVM enables a mechanism that can identify

and peel off all reused and standardized APIs with respect

to the underlying resource utilization and allocation for these

APIs. Through service choreography techniques, e.g., WS-

CDL [13], these APIs can be customized by SaaS developers

for their composite service developments and deployments. In

this way, microservices can be partitioned to be two layers,

where the lower-layer microservices, defined as the resource

microservices, refer to the APIs that are intensive to utilize

and allocate the underlying resources (report generater, cache,

authentication, transactions, etc.), and the higher-layer mi-

croservices are defined as business microservices to delineate

the ones that are intensively developed towards business-

level needs (web API, business logic, business analytic, etc.).

Resource microservices enable customization of access for

business microservices.

Note that customizing resource microservices implies a

possible “black box” feature for BigVM. Ideally, by applying

BigVM, not only can it provide SaaS developers with faster

and easier developments and deployments, but also it is

possible for business actors to get involved in customizing

the microservices for business-level needs.

2) Components: To fully realize the “black box” feature for

BigVM, some specific components, including a microservice

orchestration and a workflow engineengine are applied.

a) microservice orchestration engine: In BigVM, a mi-

4747

Authorized licensed use limited to: Macquarie University. Downloaded on December 10,2020 at 16:47:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: BigVM Enabled Development Workflow: Seperation of Development and Deployment

croservice orchestration refers to the process that identifies

platform microservices and coordinates, assigns, and exposes

multiple business microservices and resource microservices

as a single aggregated service (ordering service, accounting

service, etc.). This process can be as simple as altering the

parameter settings for the identical sets of resource microser-

vices, or as complex as handling cross-domain microservice

composition. A microservice orchestration engine should take

QoS metrics, robustness, etc., into consideration such that

resource microservices can consistently deliver the aggregated

service for business services to acquire. It is usually used

to automate business processes by loosely coupling services

across different applications and enterprises and creating new

composite applications [14].

A microservice orchestration engine should aim at auto-

scaling, which refers to automatically adjusting resource u-

tilization and allocation for the resource microservices. The

state-of-the-practice demands an explicitly-specified baseline

requirement. However, lacking or having inaccurate baseline

requirements tends to cause inaccuracy of resource utilization

and allocation as well as performance bottleneck. In BigVM,

baseline requirements can be obtained since the associated

underlying resource patterns can be designed to be fully

understood by platform microservices. Therefore, an efficient

auto-scaling can be resolved in BigVM.

Decisions can be made for selecting microservices and

composing them to achieve the features requested by SaaS

developers. This is made possible by standardized component

interfaces and service behavior definition protocols, e.g., WS-

CDL. In this way, microservices understand how to communi-

cate with each other and developers do not have to implement

their own communication mechanisms for every single project

development (which often leads to inconsistency). Some sam-

ple microservices and their orchestrations can be pre-built such

as as report generation, data aggregator, etc.

b) workflow engine: BigVM employs a workflow execution

engine, that adopts a workflow-modeling-compatible approach

to align business models with IT architectures, developments,

and deployments. Specifically, a workflow engine can be

used for resource planning of runtime workflow execution

that results in microservice choreography. Therefore, resource

microservices can be rendered consistent with the runtime

business microservices as part of the “black box”. As a result,

BigVM enables a better flexibility such that SaaS developers

can be further isolated from deployment environments. On the

other hand, it is possible that SaaS providers, e.g., project

managers, can be more involved in configuring SaaS solutions

according to the underlying business microservices.

3) Abstraction and Optimisation: BigVM offers solid func-

tions of abstraction and optimization to reduce the burden on

the SaaS developers. Specifically, SaaS developers only need

to specify the desired features by putting together the pre-

defined feature components (or custom ones using our Rapid

Development APIs). The orchestration decisions are then

passed to the deployment environment where the microservice

coordination engine, e.g., Kubernetes, implements the decision

by provisioning Docker containers.

There are three layers of abstraction in BigVM: 1) the phys-

ical resources that are hidden from the container scheduler by

OpenStack of private IaaS cloud; 2) the container coordination

and scaling that are hidden by the scheduler (e.g. Kubernetes)

so it appears to be a pool of containers that can meet the needs

of microservices developers. These two layers are already

realized by the off-the-shelf technologies.

In BigVM, we add a third layer of abstraction that hides the

underlying microservices from the feature developers. Usually

the state-of-the-practice demands the knowledge of developing

microservices. With the multi-layer microservice hierarchy,

4848

Authorized licensed use limited to: Macquarie University. Downloaded on December 10,2020 at 16:47:01 UTC from IEEE Xplore. Restrictions apply.

the lower-layer platform and resource microservices can be

easily accessed by the higher-layer business microservices

and can be composed by workflow or orchestration engines.

Therefore, SaaS developers do not have to worry about what

microservices comprise their applications. Eventually, business

actors are able to create applications that are implemented as

microservices without knowing code-level details about them.

C. BigVM Enabled Development Workflow

A typical BigVM enabled development workflow can be

demonstrated in Figure 2. SaaS developers (or even SaaS

providers) can parse the business requirements into feature

components, that are delivered to the auto composer (reflected

by workflow and orchestration engines) for customizing the

business microservices. Then the corresponding resource mi-

croservices are identified and orchestrated. The SaaS applica-

tions are deployed accordingly and the runtime effects trigger

feedback for the auto composer for online orchestration for

performance improvements.

D. Benefits

BigVM presents the following benefits due to its desirable

features.

1) Cost Efficiency and Optimization: BigVM advances in

efficient and optimal cost because i) due to the multi-layer

microservice hierarchy and the “black box” effects it is asso-

ciated with, SaaS developers can be freed from highly repeated

or standardized deployments, such as OS-level deployments.

Therefore labor forces can be reduced. ii) all the standardized

components, e.g., RESTful APIs, allow BigVM to gather

structured information that is easy to access and analyze

and can be used to optimize the templates such that all the

applications developed above can be benefited. iii) BigVM

understands the characteristics for each component (sentivity

to latency ,CPU intensity etc.) such that it can coordinate

resources accordingly.

2) Easily-achieved Fault tolerance: Monitoring and recov-

ery mechanisms are built-in in BigVM that are transparent to

user applications. Through the runtime workflow planning and

verification provided by the orchestration engine and workflow

execution engine, fault tolerance can be easily achieved and

SaaS developers do not need to tangle the underlying OS-level

fault tolerance that are handled by BigVM in our work.

3) Security: Since standardised deployment environment is

offered and isolated from SaaS developers, security can be

better maintained because less human intervention is expected

to be involved—security policies can be enforced by BigVM

on multiple layers, rather than depending on each individual

developer.

IV. EVALUATIONS

It would take a long-term development lifecycle to fully

realize the functionality of BigVM. Note that BigVM can be

built on many infrastructures, e.g., Docker containers. At this

point, the efficacy of BigVM can be deduced by evaluating

the performance of the Docker containers that are applied

within. Particularly, a set of tests are conducted to evaluate

the performance of the structure with Docker containers on

top of virtual machines against the one without. All the tests

are run on an AWS Lightsail VM with 512MB memory, 1

Core Processor, and 20GB SSD Disk (1GB as swap). The

running system is Ubuntu 16.04.1 LTS and the Docker version

is 1.13.1, build 092cba3. We use sysbench, which is a tool to

provide benchmarking capabilities by supporting testing CPU,

memory, File I/O, and so forth. Due to the lack of the data

from other SaaS platforms, we do not enable comparisons of

evaluation metrics in this paper.

A. CPU Benchmarking

When running with the CPU workload, sysbench verifies

prime numbers by doing standard division of the number by

all numbers between 2 and the square root of the number.

When a remainder of 0 is given by a certain number, the

next number is iterated with the identical process. Hence this

iteration puts stress on the CPU with a limited set of the CPUs

features.

Table I delivers the experimental results of the CPU load

benchmarking. It can be observed that for both structures

with or without Docker containers, the minimum, maximum,

average completion time per request and the threads fairness

execution time grow proportionally when the maximum run

grows. Interestingly, it can be observed that overall, the

response time of the structures with and without Docker

containers are similar sometimes. The structure with Docker

containers is even better, which can validate the advantages of

the process isolation feature of Docker containers.

B. File I/O

Table II presents the experimental results of File I/O testing

with file size 1G. To test file I/O, a set of test files with

size larger than the available memory are utilized such that

the file caching does not impact on the workload too much.

It can be observed that when the number of threads grows,

the minimum, maximum, average response time per request,

the threads fairness events, and the threads fairness execution

time grow accordingly. Typically, the structure with Docker

containers takes averagely 4.8% to 36% longer than the one

without Docker containers to complete the tasks, that can be

totally acceptable given the reasonable amount of threads.

Our experimental results for Docker containers indicate that

it can effectively use CPU without compromising the file I/O

by much. It could be deduced that BigVM being built on

Docker containers can achieve the similar performance while

advancing in the Docker container features, such as process

isolation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a microservice-based architecture

for SaaS applications namely BigVM, which can partition the

traditional microservices into multiple layers. By targeting the

lower-layer microservices and coordinating them, BigVM can

enable a flexible customization for the business microservices

4949

Authorized licensed use limited to: Macquarie University. Downloaded on December 10,2020 at 16:47:01 UTC from IEEE Xplore. Restrictions apply.

WithDocker
CPU Bench-
marking
maximum
run = 10000

WithDocker
CPU Bench-
marking
maximum
run = 20000

WithDocker
CPU Bench-
marking
maximum
run = 30000

WithDocker
CPU Bench-
marking
maximum
run = 40000

WithoutDocker
CPU Bench-
marking
maximum
run = 10000

WithoutDocker
CPU Bench-
marking
maximum
run = 20000

WithoutDocker
CPU Bench-
marking
maximum
run = 30000

WithoutDocker
CPU Bench-
marking
maximum
run = 40000

per-request
min

1.07ms 2.78ms 4.87ms 7.39ms 1.03ms 2.82ms 4.91ms 7.40ms

per-request
max

5.61ms 3.55ms 13.23ms 12.77ms 5.08ms 3.48ms 5.80ms 14.74ms

per-request
avg

1.17ms 3.00ms 5.24ms 7.77ms 1.16ms 2.99ms 5.23ms 7.77ms

Threads
fairness
execution
time
(avg/stddev)

11.6617/0.00 29.9566/0.00 52.4276/0.00 77.6734/0.00 11.6075/0.00 29.9141/0.00 52.3018/0.00 77.7133/0.00

TABLE I: CPU benchmarking with dockers vs. without dockers

WithDocker
number of
threads = 32

WithDocker
number of
threads = 64

WithDocker
number of
threads = 128

WithDocker
number of
threads = 256

WithoutDocker
number of
threads = 32

WithoutDocker
number of
threads = 64

WithoutDocker
number of
threads = 128

WithoutDocker
number of
threads = 256

per-request
min

0.00ms 0.00ms 0.00ms 0.00ms 0.00ms 0.00ms 0.00ms 0.00ms

per-request
max

37.48ms 157.18ms 281.11ms 431.68ms 101.13ms 71.86ms 197.83ms 576.57ms

per-request
avg

2.96ms 6.57ms 13.04ms 21.06ms 2.64ms 5.06ms 9.54ms 20.09ms

Threads
fairness event
(avg/stddev)

312.5000/29.72 156.2500/20.43 78.1406/18.82 39.0625/15.25 312.5000/17.50 156.2500/16.27 78.1250/15.99 39.0625/13.02

Threads
fairness
execution
time
(avg/stddev)

0.9249/0.06 1.0261/0.14 1.0193/0.24 0.8225/0.30 0.8256/0.06 0.7900/0.09 0.7449/0.22 0.7847/0.19

TABLE II: File I/O with dockers vs. without dockers

and therefore reduce the burdens of SaaS developers. More-

over, some components such as workflow and orchestration

engines can help BigVM deliver properties such as cost op-

timization, fault tolerance, and security. A set of experiments

are implemented that focus on the performance of Docker

containers to estimate the efficacy of BigVM.

The future work of BigVM is to build it into a production-

level framework. The development is actually undergoing. By

applying the architecture of BigVM, research topics such as

load balancing, load prediction, workflow optimization, and

so forth can be investigated. Specifically, machine learning

techniques can be adopted with the large-sized data flows

regarding the underlying resource allocation and utilization

can be fully obtained by BigVM. Moreover, a large amount

of case studies can be implemented for encouraging business

actors to get involved in the utilization of BigVM.

REFERENCES

[1] The challeges of saas. https://www.cio.com/article/2423666/
enterprise-software/the-challenges-of-managing-saas-projects.html.

[2] Alexander Keller and Remi Badonnel. Automating the Provisioning of
Application Services with the BPEL4WS Workflow Language, pages 15–
27. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[3] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling
to support customization and deployment of multi-tenant-aware software
as a service applications. In 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, pages 18–25, May 2009.

[4] Y. Cao, C. H. Lung, and S. A. Ajila. Constraint-based multi-tenant saas
deployment using feature modeling and xml filtering techniques. In 2015
IEEE 39th Annual Computer Software and Applications Conference,
volume 3, pages 454–459, July 2015.

[5] C. Xu, H. Zhu, I. Bayley, D. Lightfoot, M. Green, and P. Marshall.
Caople: A programming language for microservices saas. In 2016 IEEE
Symposium on Service-Oriented System Engineering (SOSE), pages 34–
43, March 2016.

[6] Docker datacenter. https://www.docker.com/products/docker-datacenter.
[7] A. Slominski, V. Muthusamy, and R. Khalaf. Building a multi-tenant

cloud service from legacy code with docker containers. In 2015 IEEE
International Conference on Cloud Engineering, pages 394–396, March
2015.

[8] B. I. Ismail, E. Mostajeran Goortani, M. B. Ab Karim, W. Ming Tat,
S. Setapa, J. Y. Luke, and O. Hong Hoe. Evaluation of docker as edge
computing platform. In 2015 IEEE Conference on Open Systems (ICOS),
pages 130–135, Aug 2015.

[9] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal, and K. N. B. S.
Murthy. Docker container security via heuristics-based multilateral
security-conceptual and pragmatic study. In 2016 International Confer-
ence on Circuit, Power and Computing Technologies (ICCPCT), pages
1–14, March 2016.

[10] Microservice. https://en.wikipedia.org/wiki/Microservices.
[11] Openstack. https://www.openstack.org/.
[12] Kubernetes. https://kubernetes.io/.
[13] Web services choreography description language version 1.0 - w3c.

https://www.w3.org/TR/ws-cdl-10/.
[14] Service orchestration. https://www.mulesoft.com/resources/esb/

service-orchestration-and-soa.
[15] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at Google with Borg. In Proceedings of the European Conference on
Computer Systems (EuroSys), Bordeaux, France, 2015.

5050

Authorized licensed use limited to: Macquarie University. Downloaded on December 10,2020 at 16:47:01 UTC from IEEE Xplore. Restrictions apply.

