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Abstract—The emergence of fog computing has brought un-
precedented opportunities to many fields, and it is now feasible
to incorporate deep learning at the edge to facilitate the develop-
ment of pervasive systems (e.g., autonomous driving and smart
grids). In this paper, we present our preliminary research on a
democratic learning scheme so that fog nodes could collaborate
on the model training process even without the support of the
cloud, which is urgently needed in the pervasive computing
context. The main objective of this work is to utilize the deployed
fog nodes to train a well-performed deep learning model together,
even with the limited local data from each participant. Instead
of relying on the cloud by default, we design a voting strategy
so that a fog node could be elected as the coordinator based on
both distance and computational power metrics to help expedite
the training process. We then experiment the effectiveness of the
scheme through a real-world, in-door fog deployment and verify
the performance of the trained model through a human moving
trajectory tracking use case.

I. INTRODUCTION

The proliferation of pervasive computing has gained tremen-
dous prominence due to the rapid development of smart
home, smart factory and smart city, etc. The introduction
of fog computing has attracted the increasing attention from
researchers in the pervasive system community owing to its
capability of providing various resources in the vicinity of end
users/devices (things). These things are thus able to connect to
the deployed fog nodes in the quest for different services rather
than waiting for the responses from the remote cloud. Among
these use cases mentioned above, entity moving trajectory
prediction, particularly human moving trajectory, is deemed
as one of the crucial research problems from the pervasive
computing perspective due to its practicality and usefulness
in terms of improving people’s life quality. For instance, in
the smart home scenario, the moving information could be
captured by the sensing equipment or wearable devices and
sent to the processing units in the pervasive system for further
analysis, then the location-based services could be provided
accordingly.

Machine learning techniques, especially deep learning, have
unleashed the great potential over the last decade and emerged
as the key enabler to produce the superior results in entity’s
moving trajectory prediction [1], [2]. While the majority of
works focus on making good trajectory prediction through
a centralized trained model, there is little effort on how to
get multiple participants involved and train the corresponding

model collaboratively in the pervasive computing context.
Even though the centralized training approach, for exam-
ple using the cloud, has demonstrated the easy-to-deploy,
economical-to-train advantages, it is still plagued by the issues
like data communication overhead and data privacy due to the
demand of uploading the data to the central server.

Currently, many moving trajectory prediction algorithms,
regardless of the traditional or state-of-the-art deep learning
techniques, rely on information propagated by either global
positioning system (GPS) or various entity moving images
and videos to achieve a satisfactory result. However, it is
considered inapplicable in many in-door trajectory predicting
scenarios due to the coarse granularity of such information.
Alternatively, the use of signal strength indicator (RSSI) has
been studied extensively in the wireless sensor network (WSN)
field, where the communicating signals from each sensor
could be further utilized in many cases without the quest for
additional hardware installation other than the sensors.

In this preliminary study, we investigate the real-time user
moving trajectory prediction problem in the fog-enabled per-
vasive environment, where the deployed fog nodes collaborate
to train the model together using the data collected from their
managed areas. In order to automate the training process and
alleviate the dependence on the cloud, we also propose a
voting strategy so that fog nodes could elect a candidate to
coordinate updates of the local model on each fog node. Lastly,
the effectiveness and performance of the proposed scheme is
verified through a real-world, in-door fog deployment setting.

II. RELATED WORK

As the most promising paradigm that brings big data
analytic capability from the remote cloud closer to the end
users/things, fog computing has risen up to the spotlight. There
are numerous studies focusing on the research of how to utilize
machine learning in the fog context to achieve satisfactory data
processing performance. Commonly, each fog node collects
data from its managed end users/things, and then sends these
data to the cloud for training the model separately to the
respective fog nodes. For example, the authors in [3] proposed
a recurrent neural network (RNN)-based algorithm to predict
the handover point for cars inside vehicular networks. In their
proposed algorithm, the cloud creates the prediction model for
each fog node through learning the features composed of the
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device’s location and service time information from respective
fog nodes. Similar approach is adopted in [4] for an RNN-
based intrusion detection application in which data training
and the detection function are performed locally on each fog
node. Interestingly, the authors in [5] designed an in-network
self-learning algorithm for anomaly detection for building
energy management system (BEMS) so that fog node could
communicate with each other horizontally via the information-
centric networking. In their work, the detection function is fed
with the data from not only the target fog node itself but also
its neighboring ones. In this manner, the detection accuracy is
significantly improved.

It is well known that GPS data could be helpful for
conventional user’s trajectory prediction. Still, the coarse
granularity of the GPS data poses a challenge for in-door
pervasive systems. Alternatively, the authors in [1] shifted
their attention to image data. They proposed an RNN-based
learning approach for trajectory prediction using aerial image
information, where a series of motions are handled by long
short-term memory (LSTM) cells, and information between
LSTM is shared through a social pooling layer to enhance
the trajectory prediction performance. However, the image
data could not be obtained easily and overused due to the
concerns over user privacy, not to mention the limited number
of available devices that could be used for data collection.
Taking into account all of these factors, we thus focus on using
the more accessible RSSI signal data from reference wireless
signal transmission devices (namely “fingerprinting” [6]) to
benefit the trajectory prediction.

III. PROPOSED SCHEME

In this section, we introduce the democratic learning
scheme, including both the voting strategy and a two-stage
collaborative learning algorithm.

A. Voting Strategy

There are two essential questions worth considering when
a candidate coordinator node is required to be voted: 1) is the
potential candidate relatively close enough to other nodes? 2)
is the potential candidate computationally powerful enough
to enable the training process? With these in mind, we use
RSSI signal as the indicator of the distance from one node
to the others. In a nutshell, RSSI value expresses the inverse
proportion to the square of distance between two communi-
cating nodes, and this feature is hence widely applied in many
distance measurement cases in the IoT environment [7]. When
it comes to deciding if a particular node is suitable to serve as
the candidate node, it is clearly irrational only to consider the
relative distance, as the node with the best relative distance
may not be the one with enough computing resources.

Henceforth, there are two vectors used to represent the
relative distance d ∈ Rn−1 and proportional computational
power c ∈ Rn−1 in each fog node, where F is the set
of fog nodes deployed in the pervasive environment with
the size of n. In addition, a system-level hyper-parameter
λ is introduced in order to cater to different deployment

requirements of the system, the value of which could be
chosen within a range of [0, 1] and adapted to balance off the
imperative needs between distance and resources. Specifically,
we use F = {f1, f2 . . . fn} to define the set of fog nodes
in the network and vfi to represent the voting vector of any
participating fog node {fi‖∀fi ∈ F}, which can be formulated
as:

vfi = λ ∗ dfi + (1− λ) ∗ cfi , vfi ∈ Rn−1

Specifically, each value in vector d and c is calculated as the
following:

dfi = [d′f1 , d
′
f2 , . . . d

′
fn ]

T, d′fi /∈ dfi

d′fn = 1− sfi,fn∑
∀fi∈F

∑
∀fk∈F,fk 6=fi

(sfi,fk)
, d′fn ∈ dfi

cfi = [c′f1 , c
′
f2 , . . . c

′
fn ]

T, c′fi /∈ cfi

c′fn =
c′fn∑

∀fj∈F (c
′
fj
)
, c′fn ∈ cfi

where the value d′fn ∈ dfi essentially represents the distance
score between node fi and fn, the value of which will increase
as the increase of the RSSI signal strength sfi,fn . It is worth
mentioning that in reality, the detected signal strength of
sfi,fn is not always equal to that of sfn,fi . When it comes
to calculating the vector of computational power, from node
fi’s perspective, the proportional computing power of node
fi is simply the ratio between its power and the reported
total computing power of all fog nodes under this pervasive
environment.

After calculating the respective voting vector in each fog
node, these nodes then communicate with their peers to
retrieve other voting information. We adopt the Coombs
Rule [8] to find out the winning candidate by ruling out other
competing nodes.

B. Collaborative Learning Algorithm

A two-stage collaborative learning algorithm is introduced
here to allow the fog nodes to train the deep learning model
together, consisting of the model initialization phase and the
model training phase.

We refer to the elected fog node as the coordinator node to
facilitate these two phases. Specifically, in order to solve the
intractable non-iid data distribution problem due to limited lo-
cal data pool, the coordinator node firstly trains the preliminary
model under a small number of epochs (around 50) using its
local private data, then it iteratively sends the model to other
fog nodes to ensure the preliminary model is initiated properly
by drawing knowledge from multiple local data distributions
managed by different fog nodes. This model initialization
process resembles the well-known transfer learning in which
a trained model from one task is used as the starting point of
another task. Yet, our goal here is to ensure the preliminary
model generalizes as much data information from different
parties as possible to facilitate the collaborative training phase
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Algorithm 1 Collaborative Learning Algorithm
Input: coordinator node fi (fi ∈ F), a set of other fog nodes
S = {fj‖j 6= i, fj ∈ F}, small epoch number ξ and the
positive training rate λ

Phase 1: Preliminary Model Training
Output: M: preliminary model trained on each node by ξ

epochs
1: M← start at the coordinator node fi to initiate the model

by training ξ epochs
2: for each fj ∈ S do
3: compose the local dataset Dj ← {(xj , yj)} . xj and
yj represent the local training data and label, respectively.

4: Mj ← receive the M from the coordinator fi
5: train the Mj for ξ epochs on Dj

6: send the Mj back to fi and overwrite M
7: end for

Phase 2: Collaborative Model Training
Output: M′: generalized model trained collaboratively by all

fog nodes
1: repeat
2: for for each fj ∈ F do
3: Mfj ← fi sends model M to each node fj
4: 4wfj ← calculate the local gradients based on

local dataset Dj

5: upload the 4wfj to fi
6: end for
7: update the M′ at fi ← FedSGD({4wfj}, λ)
8: distribute theM′ to each participant node to overwrite

the local model
9: until

while alleviating the adverse influence caused by the non-iid
data distribution.

After obtaining the preliminary model, the coordinator node
distributes the model to all other nodes to kick off the training
phase. Every participant node takes the received model as the
starting point and calculates the gradients of trainable variables
based on the local data. These gradients are then sent back to
the coordinator node to be aggregated as the final update of
the model through the federated stochastic gradient descent
(FedSGD) [9].

Algorithm 1 demonstrates the details of these two phases.

IV. CASE STUDY & DATA COLLECTION

We adopt the user’s trajectory prediction in an exhibition
hall as a use case pervasive system to demonstrate the merit
of our proposed scheme. Specifically, the pervasive system
could provision the prediction service on the user’s trajectory
to alleviate the overly-crowded flow during the exhibition and
shows the current status of usage in each space, such as a
booth, to the attendees. To realize the trajectory prediction,
the attendee can bring a communicating device, such as a
mobile phone, to gather the signals from reference devices,
e.g., sensors or WiFi access points, inside the building.

Fig. 1. Deployment layout of fog and sensors

TABLE I
RSSI VALUE RECEIVED BY EACH FOG NODE.

src.
dst. fog 1 fog 2 fog 3

fog 1 - -82.34 -75.04
fog 2 -80.06 - -77.18
fog 3 -79.51 -77.19 -

To evaluate the performance of our proposed scheme, we
setup a wireless sensor network inside an office building as
shown in Fig. 1. In this network, 15 sensors (Feasycom FSC-
BP103, ID from 1 to 15) work as reference devices that send
wireless signals to points (A, B,. . . ,Z) that user may walk
through. At each point, fog node collects RSSI data from all
managed sensors for a period of time. There are 3 fog nodes
deployed in total as shown in Fig. 1, where each fog node
keeps connected with other peers (green dotted arrows) and
also manages the sensors placed in that area (with different
colored overlays). When a user walks between two points
inside the building, the signal receiving device (smartphone)
held by the user collects RSSI data from sensors placed in the
same area and then sends these data to the respective fog node
for further service operations.

V. PRELIMINARY RESULTS

A. Voting Result

Table I demonstrates the received signal value of different
fog nodes. Based on the signal value, the distance score, as
mentioned in Section III, could be calculated correspondingly.
As the deployed fog nodes have the same hardware config-
urations in this initial work, the computational resources are
thus the same, and each of which has the value of 0.3333.
Additionally, the voting parameter λ is set to be 0.5, indicating
that the distance and computing power are treated equally
important at this stage. After the calculation, the fog 3 is
elected as the coordinator node according to the voting strategy
described in Section III-A.

B. Collaborative Training Result

We conduct the experiment and present the preliminary
result in this part. As mentioned above, the algorithm focuses
on enabling fog nodes to train the model collaboratively even
without the support from the cloud and exposing the local
data to others. For the experiment at this stage, we re-use the
three fog nodes that are deployed and mentioned at Section IV
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Fig. 2. Training loss for different fog nodes

to observe the model training process. When it comes to the
model structure, we simply adopt the deep neural network with
three hidden layers including 64, 128, 32 hidden neurons at
each layer, respectively.

Fig. 2 demonstrates the training loss for each fog node in
a 50 epochs iteration, and the y axis is scaled down through
logarithm for better presentation purpose. It can be clearly
observed that fog 3, as the coordinator node, is able to decrease
the loss to the lowest compared to what happened in fog 1 and
2. The fog 2, on the other hand, starts with a higher loss value
yet achieves a better performance than fog 1. Since the RSSI
signal data are only collected in a several weeks time period,
all training loss from different fog nodes are able to converge
within a short amount of time.

Fig. 3 further illustrates the user trajectory accuracy of the
collaboratively trained model based on the local test dataset
at each fog node. It is worth pointing out that the model will
only be considered making an accurate trajectory prediction
if a user moves from point A at timestamp ti to point B at
timestamp ti+1 being predicted correctly at both spots. It also
verifies that fog is able to estimate the trajectory of a moving
object merely based on the variance of the RSSI signal,
which essentially contributes to the continuous advancement
of localisation field. Regarding the value shown in Fig. 3, it
also reflects the result from Fig. 2 that even though fog 3
achieves the highest accuracy among all, the shared model
still performs well on other fog nodes with locally collected
data. In addition, the quality of RSSI signal data used for
training at each fog node differs due to the real-world physical
environment where sensors are deployed. For instance, there
are more obstacles like office cabinets (drawn in Fig. 1) in
fog 1 managed area and thus causing more interference, which
could deteriorate the quality of collected data in that area as
well as the accuracy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the initial work on using a
democratic approach to enable collaborative learning in the
fog-enabled pervasive environment. The real-world, in-door
fog and sensor deployment are used to verify the effectiveness
of our proposed scheme at this stage. It is assured by the
preliminary experimental results that an appropriate coordina-

Fig. 3. Accuracy at different fog nodes

tor node could be elected owing to the practically designed
voting strategy, which empowers the training process without
the reliance on the cloud server. Additionally, the two-stage
collaborative training algorithm could alleviate the impact on
no-i.i.d training data issue on each fog node while not exposing
the local data to others, and a satisfactory trajectory prediction
could be achieved for each participant regardless.

For future work, we will continue to investigate how
emerging collaborative deep learning in fog environment
could facilitate the development of the pervasive system. For
instance, we are currently looking into refining the deep
learning model structure and collaborative learning process to
make its performance competitive with the centralized model
trained at the cloud. In the meantime, we are expanding the
scale of deployment for both fog nodes and sensors in other
environment settings to explore the feasibility of the scheme
in different pervasive systems like smart agriculture systems.
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